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Abstract
The electronic structure of f-electron systems is calculated with the self-
interaction-corrected local-spin-density (LSD) approximation. This scheme
allows for a splitting of the f-electron manifold into an integral number of
localized electrons and self-consistently determined fractional number of band
electrons. Therefore, in comparison with the LSD approximation, where all
f states are pinned at the Fermi energy, only a maximum of one f band is
left at the Fermi energy. We show that this band is partially occupied with
occupancy nf , and the f-electron fluctuations are reduced compared with the
LSD approximation. When nf exceeds a critical value of approximately 0.6, it
becomes energetically more favourable to localize this state, and the number of
valence bands is reduced by one.

1. Introduction

The classification of the rare earths and their compounds in terms of their valencies provides
an elementary explanation of their physical properties. In particular, dramatic changes in the
lattice parameters of the rare earths can be related to valency changes [1]. Most of the rare
earths in the solid state are trivalent; this is in contrast to the atomic state, where the rare earths
are divalent. However, some compounds involving Eu, Sm, Tm and Yb can become divalent.
Ce compounds, on the other hand, can be either trivalent or tetravalent. Not all rare-earth
compounds can be classified in this simple manner and some of the materials with the most
interesting magnetic and superconducting properties are of intermediate-valence character,
i.e. no integer valency can be associated with the system. In this article we will show how to
calculate the valency of f-electron systems and from this derive a simple physical picture of
valencies in the solid state [2].

Valency is a chemical concept but is also very effective in describing the rare earths in the
solid state. The valency of a rare earth can vary from divalent to trivalent and tetravalent. This
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signifies that two, three or four electrons, respectively, of the rare-earth ion are chemically
active. We will show in this article that in the solid-state context this means that respectively
two, three or four electrons are part of the valence band. Furthermore, these valence band
electrons have s, p, d and even f character. The formalism presented below allows the ab initio
determination of energy differences of the various valencies and represents the evaluation of
the valency as a competition between an energy gain upon band formation and localization of
the f electron.

Almost 30 years ago, Gschneidner Jr [3] postulated, on the basis of the analysis of the
rare-earth crystal structures, melting points and heats of sublimation, that there are two types
of f electron in rare-earth compounds, namely an integer number of atomic f electrons and a
fractional number of band-like f electrons. The results of the present ab initio calculations
confirm this picture of localized f electrons which determine the valency and a fractional
number of hybridizing, band-like f electrons at the Fermi level. These calculations also predict
that if the number of fractional f electrons exceeds approximately a value of 0.6, then it
becomes energetically more favourable for these band-like electrons to localize and the valency
decreases [4]. Pressure can change the physical properties of the rare earths profoundly: both
structural and valency changes can occur. However, since the application of our methods to
this has been reviewed recently [5], it will not be discussed in this article.

The valency concepts apply also to the actinides. Like in the case of the rare earths, the
electronic structure of the actinides is of considerable interest due to the correlated nature of
the 5f electrons [6–8]. In the early actinide elements, from Th to Pu, the f electrons play an
active role in the cohesion, as manifested by the low-symmetry crystal structures, low specific
volumes and large bulk moduli. In contrast, in the later actinides, from Am to Es, the f electrons
are non-bonding, high-symmetry crystal structures are attained, the specific volumes are large
and the bulk moduli are relatively small. The change in the f-electron character is due to the
large on-site Coulomb interactions which cause the f electrons to localize from Am onwards.
In the lighter actinides the energy gain due to band formation is larger than the localization
energy. Pu is on the borderline, with a rather complex phase diagram [9] and several anomalous
phases. Of these, the ground-state α-phase (monoclinic) is characterized by actively bonding f
electrons, while the high-temperature δ-phase (fcc) is believed to be associated with localized
f electrons. When external pressure is applied to the late actinide elements, f-electron bonding
eventually sets in [10]. The trends in the physical properties of the actinides are therefore
similar to the behaviour in the lanthanides, where the localization–delocalization transition
takes place around Ce [11].

The outline of the remainder of the article is as follows. Section 2 introduces the formalism,
section 3 deals with the study of the valency of the rare earths and section 4 is concerned with
the application to the actinides. Section 5 contains our summary.

2. Formalism

Density functional theory constitutes a very versatile tool for studying the ground-state
properties of many-electron systems. It expresses, in a compact form, the total energy as
a functional of the order parameters. Taking the charge density as the order parameter, the
structural properties can be studied. However, using the charge density in conjunction with
the magnetization density allows also for detailed studies of the magnetic properties of solids.
Replacing the magnetization density by the pairing amplitude leads to a material-specific theory
of the electronic structure in the superconducting state. In the present contribution, we will
express the total energy as a functional of the charge density and the magnetization density, but
with an exchange and correlation energy which can describe both Bloch-like single-particle
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states and localized Heitler–London single-particle states. This will allow us to differentiate
between the band-like valence states and the localized states.

The self-interaction-corrected local-spin-density approximation [12] is an ab initio
electronic structure scheme which is capable of describing localization phenomena in solids
[13–18]. In this scheme the spurious self-interaction of each occupied electron state is
subtracted from the conventional LSD approximation to the total-energy functional, leading to a
greatly improved description of static Coulomb correlation effects over the LSD approximation.
This has been demonstrated in studies of the Hubbard model [19–22], and in applications to
3d monoxides [14, 15, 23], La2CuO4 [24, 25], f-electron systems [2, 4, 5, 16–18, 26–29] and
hydrogen solid [30].

In the LSD approximation the total energy of a many-electron system is found as
the minimum of an energy functional which approximates the exchange and correlation
contribution by a simple local expression:

ELSD
xc [n̄] =

∫
εhomxc (n̄(r))n(r) d3r (1)

where n̄ is the total electron spin density of the system

n̄(r) = (n↑(r), n↓(r))
n(r) = n↑(r) + n↓(r)

and εhomxc (n̄) is the exchange–correlation energy density of a homogeneous electron gas with
spin density n̄ [31, 32]. The exact exchange–correlation energy functional, Exc, of density
functional theory has the property that for any single-electron density, n̄α , it exactly cancels
the static Coulomb interaction energy for that density:

U [nα] + Exc[n̄α] = 0 (2)

where

U [n] =
∫ ∫

n(r)n(r′)
|r − r′| d3r d3r ′. (3)

Atomic Rydberg units (h̄ = 2me = e2/2 = 1) are used throughout. The cancellation in
equation (2) is not complete in the LSD approximation, and the residual

δα = U [nα] + ELSD
xc [n̄α] (4)

is interpreted as the self-interaction of the electron in state ψα .
Perdew and Zunger [12] suggested constructing a self-interaction-free total-energy func-

tional by subtracting the self-interaction of each occupied electron state from the LSD total-
energy functional, which defines the SIC-LSD total-energy functional:

ESIC[{ψα}] =
∑
α

〈ψα|−�|ψα〉 + U [n] + ELSD
xc [n̄] + Vext [n] −

∑
α

δα. (5)

Here, U [n] and ELSD
xc [n̄] are defined in equations (3) and (1), while Vext [n] denotes the energy

of interaction with the lattice of ions:

Vext [n] =
∫

Vext (r) n(r) d3r. (6)

As written in equations (1)–(6), ESIC appears to be a functional of occupied orbitals,
ψα , rather than a functional of just the total spin density, like ELSD . By a reformulation
it may be shown [12, 33] that ESIC can in fact be regarded as a functional of the total spin
density only. The corresponding exchange–correlation energy functional ESIC

xc [n̄] is, however,
only implicitly defined [33], for which reason the respective Kohn–Sham equations would be
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impractical to exploit. For periodic solids the SIC-LSD approximation can be considered an
extension of the LSD approximation in the sense that the self-interaction correction is only
finite for localized states, which means that for Bloch-like single-particle statesESIC coincides
with ELSD . Therefore, the LSD minimum is also a local minimum of ESIC . In some cases
another set of single-particle states may be found, not all having Bloch form, to provide a
local minimum for ESIC . For this to happen some states must exist which can benefit from
the self-interaction term without losing too much band formation energy. This will usually be
the case for rather well localized states like the 3d states in transition metal oxides or the 4f
states in rare-earth compounds. In rare earths different valency scenarios may be investigated,
corresponding to different localized fn configurations of the rare-earth ions, and their energies
compared. Thus, ESIC is a density functional, which may be used to describe localized as
well as delocalized electron states.

In the present work we have used two different, yet equivalent, implementations of the
SIC-LSD approach [13, 16, 34]. Both are based on the linear muffin-tin-orbital (LMTO)
method [35, 36], i.e., the electronic wave functions are expanded in terms of muffin-tin
orbitals, and the minimization of ESIC becomes a non-linear minimization problem in the
expansion coefficients. The atomic sphere approximation (ASA) is used, according to which
the polyhedral Wigner–Seitz cell is approximated by slightly overlapping atom-centred spheres
with a total volume equal to the actual crystal volume. Inside each sphere the potential is
assumed spherically symmetric.

3. Valency of the rare earths

The separation of the f-electron manifold into localized and band states means that the number
of valence bands will be determined by the subset of band states only. On the basis of this we
can introduce the following definition of the valency: Nvalency = Z − Ncore − NSIC , where
Z is the atomic number, Ncore is the number of atomic core electrons and NSIC is the number
of f states for which the self-interaction has been removed. The SIC-LSD approach allows
an ab initio determination of NSIC . In particular, Nvalency equal to three or two describes a
trivalent or divalent configuration respectively. The theoretical ground-state configuration is
determined by exploring all values of NSIC , and finding the number NSIC which results in the
lowest value of the total energy.

Figure 1. The energy difference in eV
between the divalent and trivalent states
of rare-earth materials. The dashed line
shows the experimental values for the
rare-earth metals. The open circles and
crosses show the calculated values for
the rare-earth metals and the rare-earth
sulphides, respectively. As the calculated
divalent–trivalent energy differences were
too negative, they were uniformly shifted
by 43 mRyd to agree with the observed
valence transition pressure of 6 kbar in
SmS. This shift also fixes the energy
differences for all the other rare-earth
materials. (After [2].)

Figure 1 shows the energy difference between the ground state and the configuration with
the lowest excitation energy for all the rare earths together with their sulphides. We find
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reassuringly that for all rare earths and their sulphides the trivalent and divalent configurations
are giving rise to the ground state and the lowest excited states. The LSD state, which is
obtained by putting NSIC equal to zero, is in all cases unfavourable. The divalent–trivalent
energy difference is large and positive at the beginning of the series, indicating that the trivalent
state is well favoured. The energy differences then fall sharply and become negative for
elemental Eu and for EuS and SmS, which means that the divalent state is the more stable one.
There is a large discontinuous jump at Gd and GdS which are trivalent and in the latter half of
the rare-earth series the values fall fairly steeply again, becoming negative at Yb for both the
metal and the sulphide.

Figure 2. The density of states of YbS in the divalent configuration (a) and the trivalent
configuration (b). The full and dashed lines are the Yb and S local densities of states respectively.
The energies are with respect to the Fermi energy.

In figures 2(a) and 2(b) we display the densities of states of divalent and trivalent YbS
respectively. These pictures show the SIC in action on the one-electron spectrum. Divalent
YbS is seen to be semiconducting with a band gap of 1.5 eV. The valence bands, i.e. the
first manifold of states below the band gap, contain six S-derived p states. Below this, at
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approximately −0.8 Ryd, occur the fourteen f states which are bunched together in a very
narrow peak; further down at −0.9 Ryd and −1.6 Ryd are the S 2s states and the Yb 5p semicore
states respectively. Trivalent YbS has one more valence state, which is the very sharp f state
which is pinned to the Fermi energy and which is also separated from the manifold of six states
just below it. There are now thirteen localized f states and these localized f states occur at a
slightly higher binding energy than in the divalent case. These densities of states show the
same common features of the f states split into two sub-bands: the SIC-localized f states and
the band f states. The SIC-localized f-electron states form a narrow energy band which lies
well below the valence bands, while the f-band states lie just at and above the Fermi energy.
These f bands hybridize with the s–d bands which cross the Fermi energy. The result of this
process is that the s–d bands acquire some f character, creating a different type of f electron
which can participate in electronic bonding.

It is for these systems which are characterized by a single sharp peak at the Fermi energy
that very interesting physics can occur. For the rare earths it becomes energetically favourable
to either localize this particular state, giving rise to a divalent configuration, or become of
intermediate valence [29]. When the number of band-like f electrons in the trivalent state
exceeds 0.6 or so, then the divalent state is energetically more favourable. When this number
is reduced to around 0.5, then we find a small energy difference of 20 mRyd or less between
the trivalent and divalent configurations. In this category we find all the systems which are
commonly known as intermediate-valence systems such as YbBiPt. We also find that the
correlations in these systems, with approximately 0.5 of band-like f electrons concentrated
in a narrow peak, are not adequately described in the SIC-LSD formalism, and improved
treatment of the correlations such as is provided by the dynamical mean-field theories (DMFT)
is needed [37]. However, for those systems which have a well defined valency, such as the
Yb pnictides which are trivalent or the Yb chalcogenides which are divalent, the SIC-LSD
provides an excellent description. In fact, the findings of the SIC-LSD approach are in excellent
agreement with the results of a semi-phenomenological scheme for calculating valencies, in
which the atomic f–f interactions are treated exactly and band theory is used only to calculate
the conduction electrons in the presence of the localized f states [29].

4. Valency of the actinides

The 5f electrons of the actinides are less localized than the 4f electrons in the rare earths, which
is reflected in a broader spectrum of valencies. The early actinides, Th, Pa, U and Np, are
characterized by itinerant f electrons, and the observed lattice constants and crystal structures
can be explained by band-structure calculations based upon the LSD approximation, with all
f electrons treated as normal band electrons [38]. From Am onwards, the f electrons start to
localize due to the large on-site Coulomb interaction, and the electronic structure resembles
that of the rare earths. Pu lies at the borderline of this delocalization–localization transition,
with a correspondingly complex phase diagram.

We have applied the SIC-LSD approach to the calculation of the total energies, as a function
of atomic volumes, for the actinides from U to Fm. For each case several valency configurations
have been investigated. The overview of the valency change across the whole actinide series,
in comparison with the results for the rare earths, is presented in figure 3. The trends of the
energy difference between the divalent and trivalent configurations are qualitatively the same
in the actinides and lanthanides. For the rare earths however, Eu, the system isoelectronic
with Am, has already become divalent, while Am dips towards the divalent configuration, but
remains trivalent. More specifically, the overall total-energy minima have been found to occur
for the trivalent configuration in the case of Pu, Am, Cm, Bk and Cf. For Es and Fm the divalent
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configuration gives the lowest ground-state energy. For Es the divalent equilibrium volume is
close to the experimental result. Fm has never been prepared in the solid state. In general,
the predicted gradual transition [8] from trivalent Cm, Bk, Cf towards divalent Es and Fm has
been well reproduced in the parameter-free SIC-LSD approach. In the trivalent configuration,
a narrow f band hybridizes with a broad s–d band, as is the case with the lanthanides. The
position of the Fermi level with respect to the f peak determines the number of band f electrons,
and as the f peak becomes increasingly filled, correlations become important. At Es, the degree
of filling is such that the divalent ground-state configuration, which takes into account these
correlations, is preferred. U and Np have the lowest energy when the f electrons are fully
delocalized, thus confirming the itinerant character of f electrons in the early actinides.

Np Pu Am Cm Bk Cf Es Fm

-100

0

100

200

300

dE
 (

m
R

y)

Figure 3. Trends in the energy differences between the divalent and trivalent atomic configurations
(open circles) and between the tetravalent and trivalent configurations (filled circles) of the actinides.
The crosses are the energy differences between the divalent and trivalent rare earths. (After [39].)

As a detailed example of the SIC-LSD formalism at work, in figure 4 the total energy, as
a function of volume, is shown for respectively the divalent (f8), trivalent (f7) and tetravalent
(f6) configurations of Cm. The energy minimum in the trivalent configuration is more than
30 mRyd lower than those of the divalent and tetravalent configurations, which is an indication
for the relative stability of the half-filled f shell. The calculated equilibrium volume of Cm has
turned out to be in good agreement with the corresponding experimental equilibrium value [10].

As mentioned before, the SIC-LSD approach is not a cure for all the problems of the
LSD approximation. An example of this is provided by elemental Pu. In figure 5 one can
see that for Pu, four different localized configurations lie within a range of 80 mRyd from
the trivalent ground state: they correspond to the tetravalent, pentavalent, hexavalent and
septavalent valencies. Of these, the hexavalent and septavalent ones have equilibrium volumes
close to 168 au, the experimental δ-phase of Pu. These involve respectively two and one
localized f states. The energy minima of the LSD calculation and the septavalent configuration
differ only by 3 mRyd and their equilibrium volumes differ by 27%. These results are similar to
the differences calculated between theα- and γ -phases of Ce [17,18]. This is not that surprising
since the metals in the periodic system to the left of Pu are systems where the f electrons are
delocalized. In this sense Pu is the 5f equivalent of the 4f Ce metal. Unfortunately, for Pu, the
calculated SIC-LSD equilibrium volume, which occurs in the trivalent state, is approximately
30% too large compared to the experimental volume of δ-Pu. This implies that the appropriate
ground state is intermediate between the fully localized and the fully delocalized pictures
offered by the SIC-LSD and LSD approximations, respectively [39]. This view is supported
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Figure 4. Pressure–volume curves for Cm for the trivalent f7 configuration (crosses), the divalent f8

configuration (diamonds) and the tetravalent f6 configuration. The experimental volume is 202 au.

Pu SIC-LSD
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Figure 5. Pressure–volume curves for Pu for eight different possible configurations. (See the text
for a full description; f5 corresponds to the trivalent configuration.) (After [39].)

by large discrepancies among different theories and calculations [37, 40, 41], indicating that
δ-Pu might need to be described by more accurate theories [37].

5. Summary

Figure 6 summarizes our simple rule for determining the valencies of the rare earths and
actinides. When the number of band-like f electrons exceeds a value of approximately 0.6,
then it becomes more advantageous for this electron to localize and for the system to reduce
valency. All rare earths, rare-earth sulphides and actinides follow this rule. This describes the
gradual transition from trivalent towards divalent actinide in the series Cm, Bk, Cf, resulting
in divalent Es and Fm, according to expectations [8]. In addition, it describes the different
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behaviour in the elemental rare earths where the corresponding sequence is delocalized to
trivalent (Pr–Sm) to divalent (Eu) to trivalent (Gd–Tm), and finally divalent (Yb) [2]. The 5f
system isoelectronic with Eu is Am and our calculations give Am as trivalent. The reason for
the difference in valency between Eu and Am is presumably the stronger exchange splitting in
the 4f states which causes Eu to behave as a system with a nearly filled f shell in the majority
band and an unoccupied minority f band. For the 5f states the spin–orbit coupling is much
stronger, so there is no longer a clear separation between minority and majority bands, these
bands hybridize strongly and Am does not look like a system with a nearly filled f shell.
As regards the other actinides, the SIC-LSD provides an accurate description of the heavier
actinide elements, which are characterized by localized 5f behaviour. The localization energy
is given by the 5f self-interaction correction. This energy is about half of what was found
for the 4f states in the rare earths (figure 3). From comparing our results on the actinides
with the corresponding calculations for the rare earths, we are confident that the SIC-LSD
approximation describes the valency trends through the rare-earth and actinide series. Only
for δ-Pu do we conclude that a complete description seems to be beyond this simple SIC-LSD
approach. In this case, our calculations indicate the importance of all configurations from
divalent to septavalent and the necessity of considering them in a more complete theory.

0.0 0.5 1.0
nf

-100

0

100

200

300

dE
 (

m
R

y)

Figure 6. The correlation between the number of band f electrons in the trivalent configuration
and the energy difference between the divalent and trivalent atomic configurations.
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